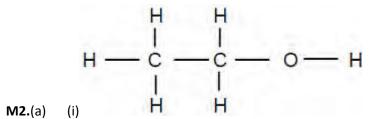
M1.(a) C₆H₁₄

(b) A


(c) B

(d) C

(e) Propanol

1

[5]

allow other arrangements provided connectivity is correct allow ——— OH

1

(ii) oxygen

accept O₂

allow O

1

oxidation

allow oxidisation / oxidising / oxidised allow redox

1

(b) (i) ring around — C — O —

1

(ii) ester(s)

do **not** allow ether(s)

1

1

(iii) propanol

propanol accept propan-1-ol allow propyl alcohol

[6]

M3.		(a)	kills bacteria / sterilises (water)	
			allow kills microorganisms / microbes / germs	
			allow 'makes (water) safe (to drink)' or disinfectant	
			ignore cleans water or removes impurities / bacteria	1
	(b)	goe	es colourless / decolourised (from red / red-brown / brown / yellow / orange) allow colour disappears	
			ignore 'goes clear' or discoloured	
			do not accept incorrect initial colour	
			do not accept precipitate	
				1
	(c)	(i)	Br ₂ and 2Cl ⁻	
	(-7	()	allow multiples / fractions if whole equation balanced	1
		(ii)	changes to red / red-brown / brown / yellow / orange do not accept effervescence / fizzing / precipitate / gas given off	
			ignore vapour / temperature changes / ignore initial colour	1
	(d)	(i)	7 <u>outer</u> electrons or	
			same number of <u>outer</u> electrons	
			allow last / final shell for outer	
			allow energy level / orbit / ring for shell	
			allow 'need to gain 1 e to have a full outer shell' ignore 'similar number of outer electrons'	
			ignore similar number of outer electrons	1

(ii) bromine / it (atom) is <u>bigger</u> **or** must be a comparison

		outer electrons (level / shell) further from nucleus or more shells do not accept more outer shells ignore more electrons	
		forces / attractions are weaker or more shielding or attracts less do not accept magnetic / gravitational / intermolecular forces allow 'electron(s) attracted less easily'	
		electron(s) gained <u>less</u> easily "outer / last / final" must be mentioned once, otherwise max 2 marks. accept converse for chlorine throughout where clearly stated	3
(e)	(i)	white precipitate or white solid ignore names of chemicals	1
	(ii)	cream precipitate or cream solid allow <u>pale</u> yellow / off-white precipitate / solid ignore names of chemicals	

[10]

1

M4. (a) not broken down by microorganisms **or** not bio-degradable

accept alternative answers such as:
do not rot / corrode / fade / react with atmosphere etc
any answers which imply the inertness or non-biodegradability of
this plastic
accept they don't react, they are 'inert'
ignore rusting

do **not** accept weathering

(b) (i) (have a) double bond **or** do not have maximum number of (hydrogen) atoms attached

accept can add / react with hydrogen accept can take part addition reactions do **not** accept it is a double bond do **not** accept additional reactions do **not** accept has 'spare' / 'free' bond do **not** accept alkene alone

(ii) single bond between carbon atoms

all atoms correct + 2 'linking' bonds (linking bonds need not go through bracket)

$$\begin{pmatrix}
H & H \\
| & | \\
C - C \\
| & | \\
Cl & H
\end{pmatrix}_{r}$$

n moved to bottom right of <u>bracket</u> i.e. is below $\frac{1}{2}$ way on the right first 2 marks are possible for chain structures accept $[-CHCI-CH_2-]_n$

(iii) many molecules **or** many monomers

1

1

1

1

1

joined / bonded / linked **or** form long chain molecules / large molecules **or** to form a long chain polymer

accept many alkenes **or** many (ethene) molecules do **not** accept many ethene alone etc. to form a long polymer is not enough for 2^{nd} mark

1

(iv) no other substances formed $(A + B \rightarrow C)$

allow because double bond breaks so other atoms can add allow one product only do **not** accept saturation occurs

:

[8]

M5. (a) (i) by heating

pressure is neutral

using a catalyst/pot/ceramic/porcelain/aluminium oxide

1

(ii) use bromine water/(alkaline) permanganate accept bromine

1

alkene makes bromine go colourless or lose its colour

accept alkane does not change the red/orange colour of bromine

not change colour/goes clear

1

1

either of these must show bonds at end

or

not H on ends

allow 3 instead of n not any other number

(ii) poly(ethene) – brackets not essential accept polythene

1

(iii) **large amount** of waste polymer/poly(ethene)/polythene/litter accept large amount of crude oil **or** finite resource used

1

it is not biodegradable

accept it does not decompose/decay/break down it causes pollution/it creates toxic fumes when burnt are neutral **not** it is not recyclable

2

[8]

chemical change/reaction
gases
carbon dioxide/CO₂
water [vapour] H₂O
(heat or heat energy or energy)

for 1 mark each

[7]

air/gases

oxygen O2

M6.

M7. (a) fuels
heat – allow light

for 1 mark each

2

(b) gases

for 1 mark

[3]